Lock the Door But Keep the Window Open: Extracting

Haichuan Xu
Georgia Institute of Technology
Atlanta, United States
haichuaxu@gatech.edu

David Oygenblik
Georgia Institute of Technology
Atlanta, United States
davido@gatech.edu

Websites

Runze Zhang
Georgia Institute of Technology
Atlanta, United States
runze.zhang@gatech.edu

Yizhi Huang
Georgia Institute of Technology
Atlanta, United States
raycloud@gatech.edu

Brendan Saltaformaggio’
Georgia Institute of Technology
Atlanta, United States
brendan@ece.gatech.edu

App-Protected Accessibility Information from Browser-Rendered

Mingxuan Yao
Georgia Institute of Technology
Atlanta, United States
mingxuanyao@gatech.edu

Jeman Park’
Kyung Hee University
Seoul, Republic of Korea
jeman@khu.ac kr

Abstract

The Android accessibility (ally) service has been widely utilized
by malware to abuse benign services. To prevent such abuse,
developers need to secure ally content access in both their apps
and mobile websites. However, a misalignment of ally protection
mechanisms exists between them. Prior research has focused on
attacking and defending ally information embedded in native
Android apps. However, our research found that ally malware can
retrieve app-protected ally information in its mobile
browser-rendered website counterpart, leaving mobile browser
users more vulnerable to ally attacks than app users. To help
benign service developers vet this attack surface, we developed
SOMBRA, an automated analysis pipeline to vet browser-side
leakage of ally information that is ally-protected in apps. Using
SOMBRA, we analyzed 294 benign services and found 29 of them
deploy app-side ally protection mechanisms to secure 256 views.
SOMBRA discovered that 241, 402, 244, and 251 elements
corresponding to their protected app-side views are ally-exposed
in their websites rendered by Chrome, Firefox, Brave, and Edge
browsers, respectively. The leaked elements contain sensitive
personal identifiable information. Finally, SOMBRA discovered
that most developers do not adopt browser-side ally protections
because existing mechanisms either have ineffective protection or
hinder the usability of their content.

CCS Concepts

« Security and privacy — Web application security.

f Co-corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.
CCS ’25, Taipei, Taiwan

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1525-9/2025/10

https://doi.org/10.1145/3719027.3744822

Keywords
Android; Accessibility; Browser; Privacy

ACM Reference Format:

Haichuan Xu, Runze Zhang, Mingxuan Yao, David Oygenblik, Yizhi Huang,
Jeman Park’, and Brendan Saltaformaggio®. 2025. Lock the Door But Keep
the Window Open: Extracting App-Protected Accessibility Information
from Browser-Rendered Websites. In Proceedings of the 2025 ACM SIGSAC
Conference on Computer and Communications Security (CCS °25), October
13-17, 2025, Taipei, Taiwan. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3719027.3744822

1 Introduction

Android’s accessibility service [7], called a1ly, although designed to
help users better interact with their devices, has been widely utilized
by malware to abuse benign services [46, 31, 34]. For developers to
secure their content, they need to deploy defenses to all resources
an ally attacker can access, including both native Android apps
and websites. However, an intrinsic misalignment exists between
how ally protection mechanisms are supported by native apps and
browser-rendered websites. In particular, native apps can adopt
stronger ally protection mechanisms provided by Android, while
websites still rely on browser-translated ARIA labels declared by
developers alone.

Researchers have proposed a line of proof-of-concept (PoC)
attacks [32, 44, 36, 42] abusing ally to retrieve sensitive
information from native Android apps. Malware analysis
work [64] also has studied how real ally malware can conduct
in-app GUI attacks on benign services. Motivated by these attacks,
Android has introduced several app-side ally protection
mechanisms to enable developers to hide their sensitive
information from untrusted ally services [5, 20]. Existing work
also has proposed to use data-flow constraints [41, 35] to
counteract several attacks that compromise the victim app’s GUI
by abusing the ally service. However, no existing work has
explored how ally attackers can still steal sensitive information

https://orcid.org/0009-0006-2049-0133
https://orcid.org/0009-0008-8541-9981
https://orcid.org/0000-0002-0225-5141
https://orcid.org/0009-0007-5404-3865
https://orcid.org/0009-0003-3701-9370
https://orcid.org/0000-0003-4387-8780
https://orcid.org/0000-0001-5859-6925
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719027.3744822
https://doi.org/10.1145/3719027.3744822
https://doi.org/10.1145/3719027.3744822

CCS 25, October 13-17, 2025, Taipei, Taiwan

when benign service developers actively deploy these ally
protection mechanisms in their Android apps.

In our research, we discovered that an ally attacker can retrieve
app-protected ally information in its mobile browser-rendered
website counterpart due to the misalignment between native app’s
and website’s ally support. Specifically, Android allows native app
developers to adopt both fine-grained static labels and dynamic
ally handlers to customize the ally information exposed to on-
device ally services. On the other hand, mobile website developers
can only rely on ARIA labels assigned to the elements to indicate
their intended access level and announcement behavior. Since the
labels are then translated by browsers before being interpreted by
the Android OS, the same declaration by developers may result
in different ally output if rendered with different browsers. This
leaves mobile browser users more vulnerable than app users to
exposing their sensitive information to ally attackers.

To help benign service developers vet this attack surface, we
developed SOMBRA!, an automated system to discover
browser-side leakage of ally information that is app-side ally
protected. SOMBRA first derives an app-side ally model (§4.1) and
a browser-side ally model (§4.2) as a guide to its analysis. Given a
service’s Android app, SOMBRA conducts an app-side
ally-model-guided traversal (§4.3.1) to extract native fields
protected by developers. SOMBRA then attributes each protected
field to its app-side ally protection mechanism (§4.3.2) by
conducting static analysis. Using the traversal logic of the app,
SOMBRA then guides the browser-side automation engine to
discover the fields in the service’s mobile website corresponding to
the app-side protected components (§4.3.3). SOMBRA then
extracts the embedded browser-side ally information and checks
whether any leakage has occurred. Finally, SOMBRA compares the
ARIA labels declared by the website developers with app-side ally
protections declared by app developers (§4.3.4).

Using SOMBRA, we conducted a study of browser-side ally
leakage in real benign services’ websites rendered by four different
mobile browsers — Chrome, Firefox, Brave, and Edge. From the 294
benign services collected, SOMBRA discovered 29 services that
utilized at least one ally protection mechanism to secure 256
views in their Android apps. While matching the views to the ones
rendered in their websites, SOMBRA found that 241, 402, 244, and
251 elements corresponding to their ally-protected app-side
counterparts are ally-exposed in the four browsers,
respectively (§5.2). The Firefox browser exposes more elements
than the others because of its difference in ally translation logic.
For the 256 views protected on the app-side, SOMBRA found that
their website developers deploy fewer browser-side ally
protection mechanisms. SOMBRA found that only 12 (4.7%)
elements are hidden from all ally services and only 48 (18.8%)
elements have alternative ally announcements. Most developers
choose to declare no browser-side ally protection because existing
mechanisms either are ineffective at protecting their content or
hinder the usability of their content (§5.4). The leaked ally
information on the browser side contains common sensitive
personal identifiable information (PII). Among the 241 leaked

Scanner Of Mobile Browser Rendered Accessibility leakage

Haichuan Xu et al.

elements in Chrome-rendered websites, 34.4% contain user account
or credit card information and 7.5% contain user passwords (§5.3).

2 Background

ally Implementation in Android Apps. Android’s
allyService [7] allows developers to make their apps more
accessible and usable. For each view [19] declared by developers in
an app’s GUI, the Android OS populates the view with
allyNodeInfo [6] representing its ally properties. Whenever the
view changes in the GUI, it will broadcast an allyEvent [9]
containing the changes of the view and its properties to the
Android OS. The Android OS then redirects the a11yEvent to all
allyServices on the device that are registered and allowed to
receive such a type of event. After parsing the allyEvents,
allyServices can translate that information to other types of
output to users such as audio, making the content more accessible.
Similarly, al1yServices can also translate users’ various input
actions to text input or gestures on the app’s GUI screen, realizing
functionalities such as voice control and gesture recognition.
ally Implementation in Mobile Browsers. A mobile browser’s
render engine is responsible for interpreting the HTML page and
resolving dynamic content to show the web page to end users.
Similarly, it is also responsible for translating and constructing the
ally information embedded in the HTML page to ally constructs
that are understandable and parsable by the Android OS.
Specifically, a mobile browser render engine parses the Document
Object Model (DOM) [52], translates ARIA labels [51], constructs
view elements in the Accessibility Object Model (AOM) [33], and
populates ally node information within each view. With the
constructed views interpretable by the Android OS, registered
allyServices can then parse allyEvents generated by those
views and read ally information embedded in those views when
the screen content changes.

Since each browser’s render engine can have its own
interpretation of the ally labels and hierarchy, it can construct
different AOMs. This is different from the native Android app’s
ally support where the app’s declared view hierarchy is directly
interpreted by the Android OS, making the ally events generated
and their embedded ally node information consistent across
different devices. Additionally, the customizability of ally
information in mobile browsers is more limited than that in native
Android apps. This is because mobile browsers rely entirely on
ARIA labels declared in HTML pages to customize and render
elements, while Android apps have access to multiple customizable
allyEvent [9], al1yNode [6], and al1yDelegate [20] methods to
do so. As shown in §3.1, the inconsistency in the mobile browser’s
interpretation of ally labels and its lack of customizability lead to
failed ally protection of sensitive information otherwise
inaccessible to ally attackers.

3 Exposing Mobile Browser Users’ Sensitive
Information

Due to the differences in ally support between native Android apps

and mobile browsers, the apps provide stronger ally protections.

This leaves users who access their accounts and services through
mobile browsers more vulnerable to ally attackers than users who

Lock the Door But Keep the Window Open: Extracting App-Protected Accessibility Information from Browser-Rendered Websites CCS ’25, October 13-17, 2025, Taipei, Taiwan

1 TextView accountNum = findViewById(R.id.accountNum);

2 // Android 14 (API Level 34)

3if (Build.VERSION.SDK INT >= 34) {

4 // Only accessible to ally tools

5 accountNum.setAccessibilityDataSensitive(View.ACCESSIBILITY DATA SENSITIVE YES);
6}

(a) allyDataSensitive label protects ally text.

1TextView accountID = findViewById(R.id.accountID);

2// Bind an AccessibilityDelegate

3 accountID.setAccessibilityDelegate(new View.AccessibilityDelegate() {

4 @Override

5 public void onInitializeAccessibilityNodeInfo(View host, AccessibilityNodeInfo info) {
6 super.onInitializeAccessibilityNodeInfo(host, info);

7 // Override and hide text

8 info.setText("");

9 }

03});

-

(b) allyDelegate overrides and protects ally text.

1TextView userBalance = findViewById(R.id.userBalance);

2// Set a custom listener for accessibility events

3 userBalance.setOnPopulateAccessibilityEventListener(event -> {
4 // Override and hide text

5 event.getText().clear();

6 event.getText().add("User balance");

71);

(c) Customized allyEvent handler protects ally text.
1EditText password = findViewById(R.id.password);
2// Set as password type
3 password.setInputType(android.text.InputType.TYPE TEXT VARIATION PASSWORD) ;

4 // Mask put characters
5 password.setTransformationMethod(PasswordTransformationMethod.getInstance());

(d) Password field with transformation protects ally text.

Figure 1: Protections against ally information leakage for
native Android app users.

do so in apps. Although there are fewer users of mobile browsers
than users of native apps [29], they deserve the same attention and
protection.

3.1 Leakage Types

Next, we illustrate the four types of ally leakage against mobile
browser users. App users are protected from these leakages because
of app-side protection mechanisms, as illustrated in Figure 1. We
provide real leakage examples SOMBRA discovered in two apps
from the Google Play Store — Klarma (com.myklarnamobile) and
Varo (com.varomoney.bank).

App User Protection 1: allyDataSensitive. In the Klarna app,
whenever a user binds a bank account to the app, the app displays
a ViewGroup [21] for users to access the account. Within the
ViewGroup, a standalone TextView [16] stores the bank account
number. The TextView’s initialization routine [14] is set with the
allyDataSensitive [5] flag, as shown in Line 5 of Figure 1a. This
ensures that whenever an allyService not approved by the
Google Play Store as an allyTool [8] tries to access the view’s
ally content, it will be displayed as null to protect its information.
Browser User Leak 1: Absence of Fine-grained ally Access
Control. The view that displays the bank account number on the
Klarna website is directly focusable and visible while traversing
the user profile page. Upon investigation, SOMBRA found that the
HTML text field is declared with no labels that suggest its being
hidden from ally services not approved by Google. In fact, no fine-
grained ally access control label exists for website developers that
only blocks untrusted allyServices. As a result, SOMBRA found
the view on the browser side by locating its al1yNodeID [12] in
the top-level ViewGroup in the window change event [18]. After
acquiring the view’s a11yNodeID, SOMBRA inspected the ally text

field [11] of the view and found that the full account number is
present and visible to ally attackers.

App User Protection 2: allyDelegate Override. In the Klarna
app, a user can also check orders placed under the privacy and
security tab on the user profile page. For each of the accounts
bound, a TextView displays its account ID. SOMBRA found that
when the view initializes, a custom al1yDelegate class is bound
to the view, as shown in Line 3 of Figure 1b. The al1yDelegate
class then sets the text field of the view to an empty string when
it is called, as shown in Line 8 of Figure 1b. This ensures that the
ally text field of the view is never interpretable by an ally attacker
eavesdropping on the device.

Browser User Leak 2: Absence of Element Delegate. After
locating the view showing the user account ID in the Klarna app,
SOMBRA found that the view is traversable and contains the full
account ID in the ally text field of ally events generated while
focusing on the element. No labels or delegates exist for developers
to achieve the same protection similar to the app-side delegates.
App User Protection 3: Customized a1lyEvent. In the Varo app,
a user can check the balance of the account in a top-level TextView
on the user profile page. While the text field inside the view shows
the aggregated numeral balance, the ally text announcement of
the field only contains the string “user balance,” regardless of the
actual balance. Upon investigation, SOMBRA found that the view
customizes its ally event broadcast by modifying the initialization
of its a11yNodeInfo [14], as shown in Line 3 of Figure 1c. When
the al1yNodeInfo initializes, the view overrides its existing text
with a constant string, as shown in Lines 5 and 6 of Figure 1c, thus
preventing ally attackers from reading the sensitive information.
Browser User Leak 3: Uncustomizable allyEvent. The view
that displays the balance field in the Varo website is traversable by
SOMBRA and contains the full numeral balance in the ally text
field. No customization is applied to the view’s content.

App User Protection 4: Password Field. In the account login
activity of the Varo app, the password box EditText [10] view is
declared with a textPassword [15] flag, as shown in Line 3
of Figure 1d. The view is then applied with a customized
transformation method to mask every user input character with a
dot, including the most recently typed character, as shown in Line
5 of Figure 1d. This ensures that when a user types in a password,
every ally event generated from the view change contains only
the masked dots. An ally attacker eavesdropping on the field thus
cannot piece together the typed-in password by concatenating the
last visible characters from a sequence of ally events.

Browser User Leak 4: Inconsistent Password Input. The
password input box in the Varo website is focusable while
traversing the main page by SOMBRA. While inputting characters
in the EditText box, SOMBRA found that the most recently
typed-in character is visible in the ally text field of the view in
window change events. Although the previously type-in
characters are masked out, SOMBRA can piece together the user
password by concatenating the last visible character in the ally
text fields. Upon investigation, SOMBRA found that although the
input box is declared as a password type in the HTML page, the
input box is applied with a JavaScript function that reveals the last
typed-in character in an input event listener.

CCS 25, October 13-17, 2025, Taipei, Taiwan

@My ally Malware V:%dmp

Hm @Remeve —
R

Sensitive Info

Mobile Browser Website

Figure 2: An ally malware’s workflow to steal mobile
browser users’ sensitive information.

3.2 Attack Workflow

Figure 2 shows an ally malware’s workflow to steal sensitive
information from a mobile browser user. When the user opens a
browser, as shown in (D, the ally malware can monitor ther user’s

actions by parsing WINDOW_STATE_CHANGE events, as shown in @.

When the browser renders the website in ® and the user is
viewing sensitive information in @, the malware can eavesdrop on
the sensitive information by parsing ally events generated by

the views rendered by the unprotected browser-rendered elements.

3.3 Attack Prerequisites

To expose mobile browser users’ sensitive information, as shown
in §3.2, we assume an attacker has infected users’ devices with
malware that requests the ally permission and the user has already
granted the requested permissions. This is reasonable because ally
malware has been infiltrating the Google Play Store [45, 61] and can
trick users into granting ally permissions [62]. Furthermore, ally
malware remains the most popular mobile remote access trojan,
targeting a wide range of benign services [64].

4 Pinpointing Browser-Side Leakage of ally
Information
To help developers vet ally-exposed information for browser

users that is protected for app users, we developed SOMBRA, an
automated hybrid analysis pipeline that finds information exposed

on mobile-browser-rendered websites but is protected in the app.

Our study focused on services with both apps and websites
because SOMBRA uses app-side protected ally information as
ground truth. That said, browser-side ally leakage extends to
websites that don’t also have companion apps. We leave the
analysis of these websites as future work since SOMBRA doesn’t
have ground truth for them.

The input to SOMBRA is the Android APK and the website URL
of a service. After SOMBRA’s automated ally information scanning,
SOMBRA outputs all elements in the mobile-browser-rendered
websites that are accessible to ally services but inaccessible in
their Android app counterparts.

4.1 App-Side al1ly Model

The first step for SOMBRA to vet the attack surface is to
understand how ally protection to native Android apps is
implemented and formulate an app-side ally protection model.
We scoured the Android ally service implementation [7] to find
all mechanisms that allow app developers to modify ally output

Haichuan Xu et al.

— B
— Aatlc ally Data ally- protecte\
Sensitive Label Native View

Native View Andrmd Other ally
Source Code ' E Services

Dynamic ally Native View with
Handler Customized ally Response

Figure 3: App-side ally protection model. Android native
views can adopt both static protection labels and dynamic
ally modification handlers. They are directly interpreted by
the Android OS.

or restrict ally access to ally services. Figure 3 shows the
app-side ally protection model available to app developers. Since
developers can directly control the declaration and
implementation of native views, they can adopt both static and
dynamic ally protection mechanisms. For static ally protection,
developers can declare al1yDataSensitive label to views. During
app runtime, Android interprets this protection label and only
broadcasts ally information within the protected view to
Google-approved ally services. For dynamic ally protection,
developers can execute ally output modification logic during
runtime while views are constructed. Specifically, developers can
modify the allyEvent a view broadcasts, modify the static
allyNodeInfo property of a view, and assign an allyDelegate to
take over the ally information broadcast. Given the app-side
protection model, SOMBRA can further discover and attribute
app-side protected information during the app traversal (see §4.3).

4.2 Browser-Side ally Model

Next, to discover browser-side ally leakage, SOMBRA needs to
understand how ally protection to browser-rendered websites is
implemented in the web ally standard. We studied the web ally
standard guideline [50] to extract all ARTA mechanisms that allow
developers to change the ally output or restrict ally access to
their website elements. Figure 4 shows the browser-side ally
protection model available to developers. With a given rendered
web page, the only ally-related fields in the DOM are static ARIA
labels whether they are declared statically or assigned with
JavaScript dynamically. In specific, the aria-hidden label allows
developers to declare an element should be hidden from all ally
services. Alternative ARIA labels that allow developers to change
the default ally announcements of their fields include
aria-label, aria-labelledby, aria-describedby, etc.
However, since developers have no control over how browsers
translate their ARIA labels, the actual exposed ally information
accessible to the Android OS in the AOM depends on each
browser’s implementation of ally parsing logic. Given this extra
layer of ally translation, the same element declared by developers,
if rendered with different browsers, may result in different ally
properties in views interpreted by Android and broadcast to ally
services. With the browser-side ally protection model, SOMBRA
is then able to extract exposed ally information (see §4.3).

Lock the Door But Keep the Window Open: Extracting App-Protected Accessibility Information from Browser-Rendered Websites CCS ’25, October 13-17, 2025, Taipei, Taiwan

o] —[]—B - ®-®

Webpage Element Static ARTA Native View Android Other ally
Source Code Label Rendered by Browser oS Services

Figure 4: Browser-side ally protection model. Web page
DOM elements can only contain static ARIA labels. The
elements with labels need to be translated by browsers and
then interpreted by the Android OS.

4.3 Finding the Mismatch Between App-Side
and Browser-Side ally Protection

Given the misalignment of ally protection between native Android
app and browser-rendered web page components, SOMBRA next
analyzes the Android app and mobile website of a given benign
service and finds ally leakage on the browser side.

4.3.1 ally-Model-Guided ~ App-Side Analysis. Pinpointing
protected ally information in the app is challenging because app
developers use complex layered structures to organize the views
shown to users in the frontend GUL To reveal an app’s underlying
ally information, a system should exhaustively traverse a given
user GUI screen together with all redirections and child screens, as
well as explore layered view structures within groups of views. To
achieve this, SOMBRA adopts a customized depth-first strategy to
guide the discovery and hierarchy breakdown of ally information
within the GUL

After the manual page setup (details in §5.1), SOMBRA
initializes the retrieval of ally information from the user profile
page. Algorithm 1 shows SOMBRA’s traversal strategy for
exhaustively recording the ally information of GUI elements in
the user account page. When the page is first initialized, SOMBRA
captures the TYPE_WINDOW_STATE_CHANGED ally event broadcast
by the app that indicates the start of a new GUI screen, as shown
in Line 3. SOMBRA then retrieves the source node (represented as
an allyNodelnfo) of the ally event and marks it as the root node
of the user account page. Given the root node, SOMBRA adopts a
depth-first pre-order traversal to visit all descendants of the node.
For each node visited, SOMBRA records the ally text embedded
and broadcast by the view, together with its properties such as

viewType and allyDescription, as shown in Lines 8 and 9.

When encountering clickable elements that can redirect to a new
GUI screen, such as a Button or ViewGroup, SOMBRA prioritizes
the traversal of the new window state triggered by clicking the
element, as shown in Lines 10 and 11. SOMBRA then captures the

new ally window state change event and continues the traversal.

To keep a record of the layout hierarchy of the current page, given
each GUI element, SOMBRA records all children of the node and
pushes them into a stack for future processing, as shown in Lines
14-16. When all nodes within the current screen are traversed,
SOMBRA issues global_action_back ally command to navigate
back to the previous screen and continues the traversal, as shown
in Lines 18-20. Finally, the traversal ends when no elements
remain in the node stack.

After the app traversal of ally information concludes, SOMBRA

records all ally nodes with null text properties or empty strings.

Algorithm 1: SOMBRA’s depth-first pre-order traversal of
app-side ally node information.

1 nodeStack = 0;

2 Function onAllyEvent(event):

// Capture the initial ally event when navigating to a page
3 if event.type == TYPE_ WINDOW _STATE_CHANGED then
// Extract the top-level source node of the event

4 node = event.getSource();
5 nodeStack.push(node);
// Depth-first traversal of the children of the ally
nodes
6 while !'nodeStack.isEmpty() do
7 node = nodeStack.pop();
// Record the ally node’s embedded text and type
8 record(node.text, node.viewT ype,
9 node.allyDescription);
10 if node.isClickable() then

// Click buttons, expandable views to navigate
to new screen change
node.actionClick();

12 end

13 else

for childNode € node.getChildNodes() do
‘ nodeStack.push(childNode);

end

17 end
// Traverse back to the previous screen when no
new nodes exist on the current GUI screen

18 if CurScreenNodeCount == 0 then
19 ‘ global_action_back();
20 end
21 end
// End the traversal
22 return;
23 end
24 end

We designed SOMBRA to ignore constant strings in ally nodes that
are different than the nodes’ visible text. That said, SOMBRA will
miss developers using constant strings to protect sensitive fields
(e.g., hiding a user balance amount with the string “user balance”).
SOMBRA users could enable this but will introduce higher false
positives caused by developers’ deliberate definition of different
ally node text (e.g. describing a “search” button as “search this
app”). SOMBRA excludes an ally node when it is a view type
that originally shouldn’t have a text property such as imageView,
layouts, switches, toggles, scrollView, etc. Now, SOMBRA has
a collection of elements whose ally information is intended to
be hidden from unwanted ally services by app developers. This
collection indicates the app-side ally protected GUI elements by
app developers and will be used to compare with the same elements
on the browser-rendered website elements.

4.3.2 Attributing App-Side Protection Mechanisms. Since each
type of browser-side leakage is caused by the inefficacy of
providing a strong app-side ally protection mechanism, SOMBRA
first examines the app-side protected view and finds its
implemented app-side protection mechanism. However, attributing
the app-side protection mechanism given a dynamically captured
ally event is challenging. This is because multiple instances of the
same view type can be instantiated by developers in the app, and
multiple mechanisms, including both static XML declaration and

CCS 25, October 13-17, 2025, Taipei, Taiwan

dynamic view handler routine, can be used by developers to define
and customize the ally behaviors of a view type. To accurately
pinpoint all ally protection mechanisms declared by developers, a
system must explore and capture all initialization characteristics
involving a view. To achieve this, SOMBRA combines static ally
label scanning with ally label data-flow analysis to resolve all
ally protection mechanisms used by a view.

Given an allyNodeInfo property of a dynamically captured
view that hides its ally information, as discovered in §4.3.1,
SOMBRA first captures its ally node resource ID, as this ID
indicates the static view type declared by developers. SOMBRA
then searches all static view declarations in the APK (all XML files
in res/layout) to pinpoint the view properties that match the same
resource ID. SOMBRA then extracts static ally labels declared by
developers, in particular the al1yDataSensitive label that makes
it inaccessible to untrusted ally services. Then, to determine all
dynamic ally customization made to the view, SOMBRA searches
for all view initialization routines in Activities. Under all functions
that allow customization to a view component such as
setContentView, inflate, etc. SOMBRA first taints the view data
structure with the same Android ID that matches the resource ID
found in dynamic ally node capture. SOMBRA then propagates
the taint and marks when it determines the tainted tag appears in
any ally label modification function such as setA11yDelegate,
setallyNodeText, etc. Given all ally label customization routines
specific to the view, SOMBRA finally maps the customization
method to the four ally protection routines discussed in §3.1.

4.3.3 ally-Model-Guided Browser-Side Analysis. After obtaining
the GUI elements in the app that are ally-protected, SOMBRA
next finds the same elements on the browser-rendered website and
examines whether they are unprotected and contain ally text
information. However, locating the same GUI elements on the
mobile browser-rendered website is challenging. A service’s
website and app, although intended to convey the same
information to users, usually are developed by two teams of
developers with different content layouts. Even for hybrid services
whose apps are translated versions of the website, their GUI
element hierarchy still differs between the two versions.
Additionally, since each mobile browser implements its own
interpretation of the website layout and adopts its own translation
of ally ARIA labels, the sequence for an ally service to traverse

the same website differs depending on the browser that renders it.

However, we found during our research that in addition to the
DOM, the AOM browsers created while rendering a web page
contain crucial ally node structural information and that
neighboring element properties can help adjust and calibrate the
traversal to adhere to the app-side traversal sequence. To
accurately pinpoint the same elements on a service website
rendered by different browsers, SOMBRA adopts a dynamic
app-side-guided AOM traversal strategy. After the manual setup
(see §5.1), SOMBRA starts the
mobile-browser-rendered website in search of the corresponding
app-side ally-protected elements.

As shown in Algorithm 2, SOMBRA first acquires the AOM
created by the browser at the initial state of the current page. For
each of the traversal sequences on the app side that led to the

traversal on the

Haichuan Xu et al.

Algorithm 2: SOMBRA ’s browser-side traversal for
identifying elements corresponding to app-side ally-
protected Views. SOMBRA matches element types and
aria labels in addition to app-side traversal sequence when
browser layout is different than the app layout.

1 stepldx = 0;
2 Function startTraversal(appA1lySequence):

// Start from the root ally node in AOM
3 currentRoot = AOM.getRootAl1yNode();
4 while stepldx < appAllySequence.length do
5 targetStep = appAllySequence[stepldx];
6 matchingNode = null;
// Match app-side traversal sequence
7 nodeStack = 0;
8 nodeStack.push(currentRoot);
9 while 'nodeStack.isEmpty() do
10 node = nodeStack.pop();
// Match app-side element with text and type
11 if node.matches(targetStep.text, targetStep.type)
then
12 matchingNode = node;
13 break
14 end
15 for child € node.getChildNodes() do
16 | nodeStack.push(child);
17 end
18 end
// When browser layout differs from app layout
19 if matchingNode == null then
// Global page search with type and label
20 nodeStack = 0;
21 candidates = [|;
22 nodeStack.push(currentRoot);
23 while 'nodeStack.isEmpty() do
24 node = nodeStack.pop();
25 if typeMatch(targetStep.type, node.role) then
26 | candidates.push(node);
27 end
28 for child € node.getChildNodes() do
29 | nodeStack.push(child);
30 end
31 end
// Match aria-label
32 for node € candidates do
33 if node.ariaLabel ==
targetStep.contentDescription then
34 matchingNode = node;
35 break
36 end
37 end
38 end
// Click buttons, expandable views to navigate to new
screen
39 if targetStep.isClickable then
10 matchingNode.actionClick();
a1 currentRoot = AOM.getRootAllyNode();
42 end
43 stepldx + +;
44 end
45 return matchingNode;
46 end

discovery of an app-side ally protected element, SOMBRA matches
the button and expandable view clicking sequences and searches for
the element within the final landing page. If no clickable elements
are present in the app-side traversal, SOMBRA matches the child

Lock the Door But Keep the Window Open: Extracting App-Protected Accessibility Information from Browser-Rendered Websites CCS ’25, October 13-17, 2025, Taipei, Taiwan

Table 1: Element Type Rules SOMBRA Adopt To Match Web
Page Elements To Their Android App Element Counterparts
And Whether They Contain ally Text.

HTML Element Android Element ally Text
<div> FrameLayout X
 TextView v
<p> TextView v
<a> TextView 4
<h1>, <h2>, etc. TextView v
<button> Button v
 ImageView X
<input>text EditText v
<input>pytton Button v
<input>checkbox CheckBox X
, ListView v
<select> Spinner X

hierarchy of the ally-protected view to the DOM hierarchy on the
web page, as shown in Lines 7-18.

When the browser page layout differs from the app layout and
no element is found according to the app-side traversal sequence,
SOMBRA conducts a global page search to locate the element, as
shown in Line 19. SOMBRA first narrows down the element
candidates by finding all website elements that correspond to the
app-side views according to Table 1, as shown in Lines 20-30
of Algorithm 2. For example, when an app-side ally-protected
TextView element’s traversal sequence matches a , <p>,
<a>, or <h1>, etc., SOMBRA confirms that it is a valid candidate.
Given these elements, SOMBRA further attributes the ARIA label
to the app-side content description to infer the matching role of
the element in Lines 32-37.

When a clickable element is matched, SOMBRA sends an ally
action to click it and continues the traversal on the updated page and
its updated AOM, as shown in Lines 39-42. When a match of the app-
side ally-protected element is found in the DOM, SOMBRA then
queries and records the ally role, ally states, and ally properties
fields within the element’s AOM node and its ARIA labels declared
in the DOM. SOMBRA finally compares the ally text information
accessible to any ally services in the ally properties fields with
the ally text field in the app-side element. If the browser-side
information is not null or an empty string, SOMBRA confirms
that the browser-side element leaks ally information otherwise
protected on the app side.

Since the discovered browser-side ally information visibility can
be caused by four different types of browser leakage as discussed
in §3.1, SOMBRA next attributes the reason for each found browser-
side ally leakage.

4.3.4 Attributing Browser-Side Leakage. Since the development
team of a service’s app and website can be different, SOMBRA
further needs to attribute the reason for the found browser-side
leakage. If the app-side ally-protected information is not declared
with ARIA protection labels by website developers, the al1ly leakage
is caused by the deliberate inconsistency between a service’s app
and website development team. If the same app-side ally-protected

information is also declared with ARIA protection labels, the ally
leakage on the browser-side is inherent to the browser’s translation
of ally information according to web ally standards and cannot
be avoided by website developers alone.

SOMBRA examines the ARIA labels declared in the DOM that
correspond to the AOM element with the a1y properties leakage. If
the element in the DOM does not contain either the aria-hidden
label or alternative ARIA labels that can change an element’s ally
announcement, as discussed in the browser-side ally model §4.2, it
is the inconsistency between the website development team and the
app development team that caused the ally leakage. Otherwise, if
such a label is present, the browser’s render engine reveals the ally
information to ally services according to the web ally standard
and causes the ally information leakage.

SOMBRA now has finished vetting benign services’ ally
information leaked in mobile browser-rendered websites but
protected in their native apps. We discuss the developer’s defense
as well as mitigation to the attack surface in §7.

5 Evaluation

We deployed SOMBRA to vet ally-exposed information for
browser users that are protected for app users in real services.
App-side ally information traversal is implemented in Java (1.1K
lines) leveraging the Android ally service [7]. Browser-side AOM
retrieval and traversal is implemented in Python (0.5K lines)
leveraging Appium [26], the SOTA mobile Ul automation tool.
Extracted ally field categorization into common PII types is
queried through Google Cloud natural language APIs [38].
Dynamic analysis of the applications and mobile browser-rendered
websites is hosted on a Google Pixel 5 device running Android 14.

5.1 Dataset & Experiment Setup

Dataset. To collect a benign services dataset, we queried
AppBrain [25], a state-of-the-art (SOTA) Android market
intelligence service, for the top-150 free finance, shopping, and
transportation Android applications in the U.S. This is selected
according to the most abused categories of apps from the most
recent Android ally malware study [64]. For each application, we
collected both the Android package name and its website URL (if it
exists). To acquire their Android applications, we downloaded
their most recent versions from AndroZoo [23], the SOTA Android
application dataset used in top-tier research, resulting in a
collection of 294 APKs, excluding duplicates, and have their
service websites. We selected Chrome, Firefox, Brave, and Edge to
render the services’ websites.

Experiment Setup. We created test credentials for 226 services
that support signing up with email/phone numbers. We used
pre-existing personal accounts for 23 services. We asked for and
received test credentials from four services that require real
accounts that we did not have personal accounts for. We failed to
acquire valid test accounts for 41 services. For each service, we
logged into the app and browser web pages, filled in personal
information fields, and bound one Chase credit card and one Chase
banking account when possible to mimic normal users’ sensitive
information. We manually left the app and the website at the user
account page for SOMBRA to start the traversal because this page

CCS 25, October 13-17, 2025, Taipei, Taiwan

contains the most sensitive information. SOMBRA users can pick
any page to start the traversal. For services for which we failed to
obtain valid login credentials, we manually left them at the login
page for SOMBRA to start the traversal. This conforms to the
experiment setup procedures from prior work [57].

5.2 Browser-Side ally Leakage in Real Benign
Services

Table 2 shows SOMBRA'’s findings of browser-side ally information
leakage in the Chrome, Firefox, Brave, and Edge browsers in real-
world benign services. We manually verified and confirmed these
results. We conducted additional validation of SOMBRA that shows
SOMBRA can detect app-side ally protection and match browser-
side elements with low false positives and false negatives (shown
in Appendix A due to space constraints).

As shown in the Total Row of Table 2, of 294 benign hybrid
services we collected, SOMBRA discovered a total of 29 (9.9%)
services that deploy at least one type of app-side ally protection
mechanisms in their Android apps. Upon further investigation, we
extracted their Android app manifest information and found that
all 29 services have updated their apps to target Android 14, which
provides enhanced ally protection mechanisms such as
allyDataSensitive declarations to help protect apps from
non-Google-approved ally services. We expect that more
developers will gradually update and adopt the new app-side ally
protection mechanisms.

Columns 1 and 2 of Table 2 show the benign services’ category
and package name. Out of the 29 apps that adopt app-side ally
protection, nine (31.0%) are finance apps, seven (24.1%) are
transportation apps, while the remaining 13 (44.8%) apps are
shopping apps.

Columns 3 and 4 of Table 2 show the number of view elements
that are ally protected discovered by SOMBRA in the app-side
dynamic analysis and the number of ally protection types they
adopted, respectively. As shown in the Total Row of Columns 3
and 4, a total of 256 views are ally-protected, with an average of
8.8 views protected in each app. The number of views protected
within each app varies significantly across different apps. For the
largest numbers of app-side ally-protected views, com.route.app
contains 42 with two types of protection, namely
allyDataSensitive and customized allyEvent handler.
com.shopmium also contained 40 views protected by
allyDataSensitive fields. For the least number of
ally-protected views, com.acehardware.rewards only protects one
view, which is the account login password EditText view, using
the ally password protection. As shown in Column 4, the majority
of apps (18) adopt only one type of ally protection, 10 apps adopt
two different types of ally protection, and only one app
(com.puma.ecom.app) adopts three types of protection
(al1yDataSensitive label, customized al1yEvent handler, and
ally password protection).

Columns 5 - 12 of Table 2 show the number of ally-exposed
elements discovered by SOMBRA in the benign services’ websites
rendered by four different mobile browsers (Chrome, Firefox,
Brave, and Edge). The detailed exposed content type is discussed
in §5.3). As shown in the Total Row of Table 2, the 29 benign

Haichuan Xu et al.

services’ websites rendered in Chrome, Firefox, Brave, and Edge
mobile browsers exposed a total of 499, 893, 504, and 510 elements
that correspond to the app-side ally-protected views; that is 1.9x,
3.5%, 2.0x, and 2.0x more than their app-side counterparts. Upon
further investigation, we found that the reason more elements are
exposed on the browser side is that all elements within a
ViewGroup element, including expandable views rendered in the
browsers, inherit the ally text information in the AOM. This
means that for a single view in an Android app, its parent or child
element in the browser-rendered element should there be any, all
contain the exposed ally information. To mitigate this duplication
and avoid over-counting, we eliminated the duplicates and showed
the unique elements exposed on the browser side in Columns 6, 8,
10, and 12. As shown in these columns, a total of 241, 402, 244, and
251 unique elements corresponding to the app-side protected
views are exposed in the Chrome, Firefox, Brave, and Edge
browsers, respectively. Averaging across all benign services, they
exposed an average of 8.3, 13.9, 8.4, and 8.7 elements per service.
While rendering the same website, we found that the Firefox
browser in particular contains more ally-exposed views than the
other three browsers. We studied the rendering logic and found
that the Chrome, Brave, and Edge browsers have similar rendering
logic because they all adopt the same Blink render engine, which is
responsible for interpreting the website DOM structure and
translating the ARIA labels into the AOM. The Firefox browser, on
the other hand, adopts the Gecko render engine, which differs in
AOM construction logic. Specifically, while both render engines
implement the same aria-hidden label translation logic by
excluding it from the AOM tree, they treat elements marked with
alternative labels, such as aria-describedby and
aria-labelledby, differently. For each DOM element that
contains an alternative ARIA label, the Chrome, Brave, and Edge
browsers utilizing the Blink render engine only expose the ally
text information in the alternative element, while the Firefox
browser that utilizes the Gecko render engine exposes the ally
information in both the original and the alternative element.
Takeaway. SOMBRA identified a total of 256 app-side
ally-protected views across 29 benign services’ Android apps.
They adopted at least one and at most three types of Android
ally-protection mechanisms. While examining the benign
services’ websites, SOMBRA discovered that 241, 402, 244, and 251
elements matching their ally-protected app-side counterparts are
ally-exposed in the Chrome, Firefox, Brave, and Edge browsers
with 8.3, 13.9, 8.4, and 8.7 exposed elements per service. The
Firefox browser in particular exposes more elements than the other
three browsers because of the difference in adopted render engines.
Specifically, the Gecko render engine adopted by Firefox has
different interpretation logic for elements declared with alternative
ARIA labels such as aria-describedby and aria-labelledby.

5.3 Security Impact

We categorized the types of information exposed to ally services
on benign services’ websites that are ally-protected in their apps.
The exposed compromised credit
card/account/password and PII stalking to browser users. For each
ally-exposed field, SOMBRA extracts its ally label and/or hint

information causes

Lock the Door But Keep the Window Open: Extracting App-Protected Accessibility Information from Browser-Rendered Websites CCS ’25, October 13-17, 2025, Taipei, Taiwan

Table 2: SOMBRA'’s Discovered ally Leakage In Benign Services’ Websites Rendered In Chrome, Firefox, Brave, And Edge

Browsers.
Category Package Name AppP.l #p2 ‘ Chrome Firefox Brave Edge

‘ Ex>? w/o Dup.? ‘ Ex. w/o Dup. ‘ Ex. w/o Dup. ‘ Ex. w/oDup.
Finance com.varomoney.bank 4 2 7 30 11 6 7 3 7 3
Finance com.DailyPay.DailyPay 5 1 12 7| 21 12| 12 7| 12 7
Finance com.syf.mysynchrony 6 1 9 6| 17 8| 12 8| 15 8
Finance com.usaa.mobile.android.usaa 5 1 5 3 9 5 5 3 5 3
Finance com.propel.ebenefits 3 1 3 2 6 5 3 2 3 2
Finance com.meetcleo.cleo 2 1 10 7| 25 19| 10 71 16 11
Finance com.intuit.turbotax.mobile 6 1 17 12| 30 22| 17 12| 17 12
Finance com.squareup.cash 4 1 6 31 15 10 9 6 6 3
Finance io.metamask 7 2 9 7| 16 13 9 7 9 7
Transportation com.yandex.yango 2 1 8 3|1 13 8 8 3 8 3
Transportation com.coulombtech 7 1 22 13| 53 39| 22 13| 22 13
Transportation cOm-irailbehind android. 6 1| 8 8| 19 9| 8 8| 10 8

gaiagps.pro
Transportation org-ra) man. neshantraffic, 10 1 15 8| 21 12| 15 8| 15 8
tehran.navigat

Transportation net.sharewire.parkmobilev2 5 2 7 4| 17 9 7 4| 11 4
Transportation com.xatori.Plugshare 3 2 7 51 12 8 7 5 7 5
Transportation com.ventrachicago.riderapp 11 1 14 91 18 10 | 14 91 14 9
Shopping com.affirm.central 3 1 3 2 3 2 3 2 3 2
Shopping com.puma.ecom.app 8 3 26 17 | 42 28 | 26 17 | 28 17
Shopping com.route.app 42 2 93 16 | 179 28 | 87 16| 78 16
Shopping com.belk.android.belk 12 2 11 7| 16 9| 11 7 11 7
Shopping com.dollargeneral.android 8 1 18 12| 27 21| 16 8| 18 12
Shopping com.myklarnamobile 4 2 8 7| 10 7 8 7 8 7
Shopping com.acehardware.rewards 1 1 5 2 6 2 5 2 7 3
Shopping com.sneakerhotsapm.app 30 2| 43 27| 77 40 | 43 27| 43 27
Shopping com.cvs.launchers.cvs 2 2 6 8 6 6 4 6 4
Shopping com.biglotsltds.biglotsam 5 1 9 5 9 5 9 5 9 5
Shopping com.adidas.confirmed.app 9 2 21 16 | 44 20| 21 16 | 25 19
Shopping com.shopmium 40 1 79 15 | 132 23| 86 17 | 81 15
Shopping com.einnovation.temu 6 1 18 11| 37 16 | 18 11| 16 11
Total 29 256 41| 499 241 | 893 402 | 504 244 | 510 251

1: Number of app-side ally-protected views. 2: Number of types of Android native ally protection mechanisms.
3: Number of elements exposed with ally information on the browser-rendered websites.
4: Number of unique elements exposed with ally information, eliminating duplicates caused by ViewGroup handlers.

text fields and uses Google Cloud natural language APIs [38] to
categorize them into common PII types.

Table 3 shows the extracted ally information category exposed
in Chrome-rendered websites while protected in their Android
app-side counterparts. Column 1 shows the top 10 benign services
with the most ally-protected views in their apps. Column 2 shows
unique elements protected in their apps but exposed in Chrome-
rendered websites. As shown in the Total row of Table 3, a total of
241 elements are exposed out of the 29 apps that adopt app-side
ally protection mechanisms, an average of 8.3 elements per app.

Columns 3 - 7 show the ally field types of the exposed elements
such as passwords, account or credit card, key or identifiers, address
or contact, etc. As shown in Column 3, a total of 18 password fields
are ally-exposed in the Chrome-rendered websites. The puma app,

which adopts app-side ally password protection (see §3.1), does
not contain any browser-side protections, making the passwords
accessible to ally attackers eavesdropping on its mobile website.
A total of 83 (34.4%) elements expose user account or credit card
information fields in the Chrome-rendered websites. As shown in
Columns 5 and 6, a total of 29 elements contain keys or identifiers
such as tokens, wallet IDs, etc., while 40 elements expose address
or personal contact information. In-depth examples of browser-
side ally leakage that causes compromised financial accounts and
passwords to browser users are further illustrated in §6.

Takeaway. SOMBRA uncovered a total of 241 elements with
exposed ally information in Chrome-rendered services’ websites.
While their corresponding app-side views are ally protected, the
browser-side elements leak common sensitive PII information such

CCS 25, October 13-17, 2025, Taipei, Taiwan

Table 3: App-side Protected ally Information Leakage
Category In Top Services’ Websites Rendered With Chrome.

Name Chrome sw. Act./ Key/ Addr./ Others
Ex. Elements! Card Ident. Contact
route 16 0 4 2 5 5
shopmium 15 1 5 0 0 9
sneakerapm 27 1 11 0 0 15
belk 7 0 4 1 0 2
ventra 9 0 0 3 0 6
neshan 8 1 4 1 0 2
confirmed 16 2 3 2 7 2
puma 17 1 4 0 4 8
dollar general 12 2 6 2 0 2
metamask 7 1 3 0 0 3
Others 107 9 39 18 24 17
Total 241 | 18 83 29 40 71

1: Number of unique elements protected in app but exposed
in Chrome-rendered websites.

Table 4: Developers’ App-side And Browser-side ally
Information Protection Adoption Types.

App-Side Browser-Side

Name . | ARIA ARIA No

Views P. Types Hidden Change Protection
route 42 @D,B 0 4 38
shopmium 40 @) 0 0 40
sneakerapm 30 @, ® 2 11 17
belk 12 ®,® 0 3 9
ventra 11 @) 3 0 8
neshan 10 @ 0 2 8
confirmed 9 D, O 0 0 9
puma 8 O,® @ 0 0 8
dollar general 8 @ 0 5 3
metamask 7 D, ® 0 0 7
Others 79 - 7 23 49
Total 256 -1 12 48 196

1: Android app-side ally protection types. D: allyDataSensitive
label, @: custom allyEvent, 3): custom allyDelegate,
@: password protection.

as account or credit card, keys or identifiers, address or contact,
and passwords. This exposure causes compromised financial
accounts/passwords and PII stalking to browser users. Among the
241 leaked elements, 34.4% contain user account or credit card
information, while 7.5% contain user account passwords.

5.4 Developers’ App-Side and Browser-Side ally
Protection Adoption Comparison

With the extracted ally information leakage in the
browser-rendered websites, SOMBRA next compares the ally
protection adopted by the app and website developers. Table 4

Haichuan Xu et al.

shows the ARIA protection labels declared in benign services’
websites corresponding to each app-side ally-protected view.

Column 1 of Table 4 shows the 10 benign services that have the
most views protected against ally attackers in their Android apps.
Columns 2 and 3 show the number of ally-protected views in
these apps, as well as the types of Android ally protection
mechanisms adopted in these views. As shown in the top row of
Columns 2 and 3, the route app protected 42 of its views, which is
the most among all 29 apps that adopted app-side ally protection.
The route app used two types of Android ally-protection
mechanism, declaring allyDataSensitive labels and assigning
customized allyDelegate to views to alter their ally exposure.
The next apps that protected the most app-side views are
shopmium and sneakerapm, containing 40 and 30, respectively.
However, shopmium only utilized the al1yDataSensitive label to
wrap all 40 views, while sneakerapm utilized both the label and
customized allyEvent handlers. Looking at Column 3, eight of
the top 10 apps (80%) adopted the allyDataSensitive label in
Android 14 to protect them from being accessed by
non-Google-approved ally services. Four of the top 10 apps
generate customized allyEvent for the protected views, while
two assign customized al1lyDelegate. The puma app also protects
its login password field with ally-password protection §3.1.

While the benign services’ app developers have the
aforementioned methods to protect their app-side ally
information, the misalignment between app-side and browser-side
ally protection limits the ways to protect their website ally
information. Columns 4 - 6 show the ARIA labels declared by
benign services’ website developers. Only one browser-side
element is counted for each matching app-side ally-protect view
to avoid duplication.

SOMBRA found from the DOM structures that only 12 out of
256 (4.7%) of app-side ally-protected views are completely hidden
on the browser side (Chrome, Firefox, Brave, and Edge all exclude
aria-hidden elements from the AOM, thus making them
inaccessible to any ally services). Among the top-10 services that
protected the most app-side views, only the sneakerapm app and
the wventra app protected a total of five elements with
aria-hidden label. Although the label provides the strongest
protection on the browser side, it completely disallows any ally
services to access them, thus hindering the usability of the website
for users of benign ally utility apps. The inability to fine-grain the
ally access level to different ally services makes this mechanism
impractical for developers to adopt.

Column 5 shows the number of elements that are declared with
aria-label, aria-labelledby, and aria-describedby labels to
change the ally field exposed and announced to ally services.
Looking at the Total row, of the 256 app-side protected views, 48
(18.8%) contain the label to alter the browser-side elements’ ally
response. However, as discussed in §4.2, although the website
developers can alter the default ARTA announcement, it is up to
the browser’s translation and interpretation to determine the
actual exposed ally information to the AOM and subsequently to
the Android ally services. As shown in §5.2, the Chrome, Firefox,
Brave, and Edge browsers all still include the original and altered
ally information in the AOM, making them visible to any ally
services. Although some (18.8% elements) developers adopt the

Lock the Door But Keep the Window Open: Extracting App-Protected Accessibility Information from Browser-Rendered Websites CCS ’25, October 13-17, 2025, Taipei, Taiwan

alternative labels, browsers’ interpretation according to the
website ally model renders them ineffective at limiting the ally
exposure to ally services.

Column 6 of Table 4 shows the number of elements that are

completely free of any ARIA labels. As shown in the Total row, 196
(76.6%) of 256 elements protected in their app-side counterparts
have no ARIA protections declared on their websites. The shopmium
app, although having 40 app-side protected views, has no ally
protection for any of them on the browser-side. Similar behavior
also exists in other apps such as confirmed, puma, and metamask.
Not declaring ARIA protections ensures the usability of the website
elements to all ally services but at the same time makes them
vulnerable to ally malware.
Takeaway. While SOMBRA discovered 256 ally-protected views
declared by Android app developers, few website developers
declare ARIA labels to protect their browser-side ally information.
Specifically, 12 (4.7%) of the 256 elements declare aria-hidden
labels to hide them from all ally services. Since this protection
makes the ally content inaccessible to all ally services, it hinders
the usability of benign ally utility apps. While 48 (18.8%) of the
elements are declared with alternative ARIA announcement labels,
browsers still expose the ally information in the browser-side
AOM and subsequently make them visible to ally services due to
the existing web ally standard, making the protection ineffective.
Most developers (196 / 256 elements) adopt no browser-side ally
protections, ensuring the functional usability of their content.

6 Case Studies

Browser-Side ally-Leaked Bank Account Number. Klarna is a
hybrid shopping service provider with access in both its Android
app and their website. Its app is one of the most popular shopping
apps in the Google Play Store with 10M+ downloads. The user
setting page in both the app and website allows users to bind and
view bank accounts for purchases. Figure 5 shows SOMBRA’s ally
information extraction from both the Android app and mobile
website rendered in Chrome while traversing the user payment
method page. SOMBRA is able to extract users’ sensitive bank
account numbers through ally access in the Chrome-rendered
mobile website while unable to extract the same field in the
Android app counterpart.

Figure 5a shows the screenshot of the payment method page of
its Android app. During the ally page traversal, SOMBRA
discovered that the ViewGroup labeled as Account Number has a
child element that has a null value in its ally text field. After
matching the child view’s ally resource ID with Klarna app’s
static view declarations extracted from the APK, SOMBRA found
that the TextView representing the Account Number field is
declared with the Android A11Y_DATA_SENSITIVE_YES property.
This effectively forces the Android OS to only broadcast its ally
information to Google-approved ally services with the a11yTool
verification. Any non-Google-approved ally services such as the
one used by SOMBRA and the ones used by ally malware cannot
access this ally-protected information.

Figure 5b shows the screenshot of the same payment method
page of Klarna’s mobile website rendered by Chrome. As shown
in the figure, the structural hierarchy of views resembles that of

©

JPMORGAN CHASE BANK, NA

Set a nickname

Bank
JPMORGAN CHASE BANK, NA

O Ay pata_

¢/>) SENSITIVE_YES

|

Android
isAllyTool Vetting
1

@ : Protected

Account number

‘
@ ally Malware

(a) The account number field is ally-protected in the Klarna app
and inaccessible to ally malware.

Mandate reference ID

Added

= Klarna

Search for any product or brand

No Aria Protection

@)
@

in DOM
P Cully Visible
JPMORGAN CHASE BANK, NA w in AOM
I
Set a nickname >
Broadcasted to All
Bank ally Services
JPMORGAN CHASE BANK, NA
Account number
—_— A Leaked
Mandate reference ID
— @ ally Malware
[

(b) The account number field is not ally-protected in the Klarna
mobile website rendered by Chrome and accessible to ally malware.

Figure 5: Klarna’s ally implementation of the user bank
account page in both the app and the mobile website.

its Android app counterpart. Utilizing the same view hierarchy
traversal sequence as SOMBRA did in the Android app, SOMBRA
found an element with the same Account Number label. However,
the account number is visible in the node’s ally text field and
SOMBRA is able to retrieve the information. With access to the
DOM tree during the traversal, SOMBRA found that no ARIA labels
are declared for the Account Number field. As discussed in §5.4, most
mobile website developers refrain from declaring aria-hidden
protections to their sensitive information because it renders the
field inaccessible to all ally services, including benign utility ones,
and hinders the usability of their websites. With no ARIA protection
in the DOM, the Chrome browser then renders the ally node fully
visible in the AOM. Subsequently, Android extracts the field’s ally
text from the AOM and broadcasts it to all registered ally services,
making them accessible to all ally services registered on users’
devices, including the ones controlled by ally malware.

Browser-Side ally-Leaked Password. As discussed in §5.4,
since the aria-hidden protection renders the browser-side

CCS 25, October 13-17, 2025, Taipei, Taiwan

DOLLAR GENERAL QO pects
Alternative
Aria-Label
Sign In. l

Password

| w Visible in
AOM

Password*®

(] / \ Leaked

| how

Email or Phone Number

D Keep me signed in on this device

Advise Use Still Visible
) Alternative toally
SR Label Malware

Figure 6: Password leaked in Chrome-rendered Dollar
General login page. Declaring alternative ARIA labels is
ineffective at protecting browser-side ally information.

elements inaccessible to all ally services, some developers seek
other ways to protect their content by declaring ARIA alternative
labels that customize the announcement of a field when accessed

by an ally service while making the elements still accessible.

These alternative labels include aria-label, aria-labelledby,
aria-describedby, etc. Although they are only intended by the
web ally standard to improve website usability, their ability to
customize the ally announcement of elements motivates
developers to protect their browser-side elements.

Figure 6 shows the screenshot of Dollar General’s
Chrome-rendered website’s login page. While SOMBRA’s website
traversal engine enters the registered password, SOMBRA’s ally
service component is able to see and retrieve the newly entered
digits by listening and parsing the screen change events. SOMBRA
found that the password input box is declared with an aria-label
field and set to a constant string “password” However, the browser
still renders every input digit in the AOM. This is because the
existing web ally standard only recommends end-level ally
services to announce the alternative label while still advising
browsers to make the field visible in the AOM. As a result,
declaring alternative ARIA labels is ineffective at protecting
against browser-side ally leakage. Any ally services on the
device, including the ones used by ally malware, can still access
the fields declared with ARIA alternative labels.

7 Discussion

Limitations. Because Google implements fine-grained ally
protections on the app side, our study uses those protections as a
baseline for what should be protected on the browser side. That
said, if app developers accidentally misconfigure their app-side
ally protection for a view, SOMBRA will miss the corresponding
browser-side element. Detecting misconfigurations in the app is

out of scope, as we aim to align the existing protections.

Additionally, SOMBRA requires valid credentials to test each
service. However, SOMBRA users (service developers) should not
face this challenge.

Haichuan Xu et al.

WebViews and Custom Tabs. During our study, SOMBRA found
that 138 apps contain WebView [22] and 47 contain Custom
Tab [13] elements. However, no ally information is protected in
those WebView and Custom Tab elements. This is because both
use the Chromium-based render engine and Android’s native ally
protection mechanisms are inapplicable to them.

Developer’s Defense. As shown in §5.4, the existing browser-
side aria-hidden mechanism sacrifices the usability of website
content to benign ally services by removing ally content entirely
from the AOM. Alternative ally labels are also ineffective at hiding
sensitive ally information due to the existing web ally standard.
To allow developers to protect their browser-side ally content
while ensuring usability, we recommend they remove the sensitive
content from their website and redirect the user to their Android
app counterpart for access. For example, banking apps such as
Chase advise users to install or redirect to the banking apps to
conduct transactions.

Mitigating the Attack Surface. The existing Android native
ally support intends to both improve the usability and security of
app content, while the existing web ally standard only focuses on
usability. To fundamentally mitigate this attack surface, the
misalignment of app-side and browser-side ally protection
mechanisms needs to be eliminated. This would ideally consist of a
three-party collaboration that involves redesigning the web ally
standard, enforcing browsers’ interpretation of the web ally
model, and adapting Android’s translation of browser-rendered
AOM. At the base level, the web ally standard should provide
developers more freedom to fine-grain the level of ally access to
different ally services. For example, mobile website developers
can be allowed to delegate the screening of legitimate ally
services to Android and declare their content to be only accessible
to Google-approved ally services. At the browser level, a
third-party should be introduced to enforce each browser to
implement a consistent and correct interpretation of the same ally
model declared by website developers. This ensures that the ally
content access level does not differ among different browsers that
the end users choose to use. Finally, the Android OS needs to adapt
to the newly introduced web ally standard with find-grained
access to ensure each protection type is fully translated and
broadcast to on-device ally services.

Disclosure and Open-Source. We disclosed our findings to the
Chrome, Firefox, Brave, and Edge teams. At the time of writing
this paper, we received confirmation from the Firefox and Edge
team, acknowledging the exposure of ally information in browser-
rendered elements. We also disclosed our findings to all 29 service
developers who implement native ally protections in their Android
apps but leave their counterparts exposed on their websites. We
recommended that they remove the sensitive content from their
websites and redirect users to their Android app counterparts for
access. Unlike addressing a traditional vulnerability, mitigating
browser-side ally leakage requires a long-term redesign of the
web ally standard, as the current standard lacks the find-grained
ally access control available in Android. We hope our findings
can advocate for a three-party collaboration to mitigate this attack
surface, as discussed earlier in §7. Finally, SOMBRA is open-sourced
and available at https://github.com/CyFI-Lab-Public/SOMBRA.

https://github.com/CyFI-Lab-Public/SOMBRA

Lock the Door But Keep the Window Open: Extracting App-Protected Accessibility Information from Browser-Rendered Websites CCS ’25, October 13-17, 2025, Taipei, Taiwan

8 Related Work

Benign Misuse of ally Service. Ally services are often misused
by benign applications such as anti-virus engines [27] and file
system management apps [32] to achieve automated
functionalities. Multiple works focus on dissecting the misuse of
utility apps. Salehnamadi et al. [58] proposed a framework to
assess mobile applications’ ally functionality correctness. Naseri
et al. [53] introduced a study on how Android apps misuse the
ally service to achieve utility shortcuts. Chen et al. [30] proposed
a dynamic traversal technique to extract ally feature malfunctions
in Android ally apps. Instead of analyzing the benign misuse of
the ally service, we discovered an attack surface that can be
abused by malicious ally attackers.

Attacks on ally Service. The ally service is widely abused by
malware to conduct automated phishing attacks [24, 28]. The
powerful functionality of ally service allows malware to launch
attacks in an evasive manner [47]. Xu et al. [64] analyzed how real
Android malware abuses the ally service to conduct on-device
fraud against mobile banking apps. Multiple works also proposed
PoC attacks to exploit the ally service [44, 43]. Fratantonio et
al. [36] proposed an attack that enables malware to control the
GUI of an Android device with the SYSTEM_ALERT_WINDOW and
ally permissions. Mehralian et al. [49] uncovered sensitive
information leakage through overly accessible ally elements in
Android. Jang et al. [42] identified 12 ally attacks on four different
operating systems. Lei et al. [48] exposed an ally side-channel
attack that allows password leakage through guessing consecutive
content queries. Unlike the attacks that target native Android apps,
we uncovered an attack surface that allows ally attackers to
extract app-side inaccessible information in
mobile-browser rendered websites. We found this attack surface
impactful because mobile browser users of the same service are
less protected from ally attacks than app users.

Defenses against ally Attacks. Malware and PoC ally attacks
have led to the development of multiple works to counteract
malicious abuse of the ally service [65, 40]. Fernandes et al. [35]
introduced a technique to block all undeclared data-flows in
Android apps by enforcing runtime restrictions. Huang et al. [41]
proposed a more fine-grained Android ally service design to
enforce least-privileged data-flow constraints in runtime. Android
also introduced new features to app developers to block app-side
ally access to untrusted ally services [8]. With all the above
defenses considered, we found the new attack surface introduced
to still be feasible because it allows ally malware to circumvent
app-side protections. SOMBRA also helps benign service
developers vet this attack surface and guides its mitigation.
Program Analysis. Prior work use API trace analysis [37, 55,
56, 3], network traffic analysis [71, 70, 4], symbolic analysis [69,
68] and forensic analysis [54, 60, 59] to reveal program behaviors.
However, to discover app-side ally-protected elements, SOMBRA
uses a combination of dynamic app traversal and static attribution.
Browser Instrumentation. Prior work have instrumented the
browser engine to collect activities of web pages from DOM [66, 1,
63, 2, 67]. SOMBRA is inspired by these techniques but focuses the
traversal on the ally tree to reveal unprotected elements.

sensitive

9 Conclusion

We introduced SOMBRA, an automated analysis pipeline for
benign service developers to vet browser-side leakage of ally
information otherwise protected in their Android app
counterparts. Using SOMBRA, we analyzed 294 real benign
services. SOMBRA found that 29 services utilized native ally
protection mechanisms to secure 256 views in their Android apps.
However, SOMBRA discovered that 241, 402, 244, and 251 elements
corresponding to the same fields are ally-exposed in their
websites rendered with Chrome, Firefox, Brave, and Edge mobile
browsers. The leaked ally information on the browser side
contains sensitive PII information such as credit card information
and user passwords. Finally, SOMBRA discovered that existing
browser-side ally protection mechanisms either are ineffective at
protecting services’ content or hinder the usability of the content.

Acknowledgments

We thank the anonymous reviewers for their constructive
comments and feedback. We also thank our collaborators at
Netskope for their support throughout this research. This material
was supported in part by the Office of Naval Research (ONR) under
grants N00014-19-1-2179 and N00014-23-1-2073; the National
Science Foundation (NSF) under grant 2143689; and the Defense
Advanced Research Projects Agency (DARPA) under contract
N66001-21-C-4024. Any opinions, findings, and conclusions in this
paper are those of the authors and do not necessarily reflect the
views of our sponsors and collaborators.

References

[1] Joey Allen, Zheng Yang, Matthew Landen, Raghav Bhat, Harsh Grover,
Andrew Chang, Yang Ji, Roberto Perdisci, and Wenke Lee. 2020. Mnemosyne:
an effective and efficient postmortem watering hole attack investigation
system. In Proceedings of the 27th ACM Conference on Computer and
Communications Security (CCS). Virtual Conference, (Nov. 2020).

[2] Joey Allen, Zheng Yang, Feng Xiao, Matthew Landen, Roberto Perdisci, and
Wenke Lee. 2024. Webrr: a forensic system for replaying and investigating web-
based attacks in the modern web. In Proceedings of the 33rd USENIX Security
Symposium (Security). Philadelphia, PA, (Aug. 2024).

[3] Omar Alrawi, Moses Ike, Matthew Pruett, Ranjita Pai Kasturi, Srimanta Barua,
Taleb Hirani, Brennan Hill, and Brendan Saltaformaggio. 2021. Forecasting
malware capabilities from cyber attack memory images. In Proceedings of the
30th USENIX Security Symposium (Security). Virtual Conference, (Aug. 2021).

[4] Omar Alrawi, Chaoshun Zuo, Ruian Duan, Ranjita Pai Kasturi, Zhigiang Lin,
and Brendan Saltaformaggio. 2019. The betrayal at cloud city: an empirical
analysis of cloud-based mobile backends. In Proceedings of the 28th USENIX
Security Symposium (Security). Santa Clara, CA, (Aug. 2019).

[5] Android. 2025. Accessibilityevent: isaccessibilitydatasensitive(). (2025).
Retrieved 2025-01-07 from https://developer.android.com/reference/android/
view/accessibility/AccessibilityEvent%5C#isAccessibilityDataSensitive().

[6] Android. 2025. Accessibilitynodeinfo. (2025). Retrieved 2025-01-07 from https://
developer.android.com/reference/android/view/accessibility/AccessibilityN
odelnfo.

[7] Android. 2025. Accessibilityservice. (2025). Retrieved 2025-01-07 from https://
developer.android.com/reference/android/accessibilityservice/AccessibilityS
ervice.

[8] Android. 2025. Accessibilityserviceinfo: isaccessibilitytool(). (2025). Retrieved
2025-01-07 from https://developer.android.com/reference/android/accessibilit
yservice/AccessibilityServiceInfo%5C#isAccessibility Tool().

[9] Android. 2025. Accessibiltiyevent. (2025). Retrieved 2025-01-07 from https:
//developer.android.com/reference/android/view/accessibility/AccessibilityE
vent.

[10] Android. 2025. Edittext. (2025). Retrieved 2025-01-07 from https://developer.
android.com/reference/android/widget/EditText.

[11] Android. 2025. Gettext(). (2025). Retrieved 2025-01-07 from https://developer.
android.com/reference/android/view/accessibility/AccessibilityNodeInfo%5
C#getText().

https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent%5C#isAccessibilityDataSensitive()
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent%5C#isAccessibilityDataSensitive()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityService
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo%5C#isAccessibilityTool()
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo%5C#isAccessibilityTool()
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/widget/EditText
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo%5C#getText()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo%5C#getText()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo%5C#getText()

CCS 25, October 13-17, 2025, Taipei, Taiwan

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Android. 2025. Getuniqueid(). (2025). Retrieved 2025-01-07 from https://devel
oper.android.com/reference/android/view/accessibility/ AccessibilityNodel
nfo%5C#getUniqueld().

Android. 2025. Overview of android custom tabs. (2025). Retrieved 2025-01-07
from https://developer.chrome.com/docs/android/custom- tabs.

Android. 2025. Settext(java.lang.charsequence). (2025). Retrieved 2025-01-07
from https://developer.android.com/reference/android/widget/ TextView %5
C#setText(java.lang.CharSequence).

Android. 2025. Specify the input method type. (2025). Retrieved 2025-01-07 from
https://developer.android.com/develop/ui/views/touch-and-input/keyboard-
input/style.

Android. 2025. Textview. (2025). Retrieved 2025-01-07 from https://developer.
android.com/reference/android/widget/TextView.

Android. 2025. Type_view_accessibility_focused. (2025). Retrieved 2025-01-07
from https://developer.android.com/reference/android/view/accessibility/A
ccessibilityEvent%5C#TYPE%5C_VIEW %5C_ACCESSIBILITY%5C_FOCUSE
D.

Android. 2025. Type_window_state_changed. (2025). Retrieved 2025-01-07
from https://developer.android.com/reference/android/view/accessibility/A
ccessibilityEvent%5C#TYPE%5C_WINDOW%5C_STATE%5C_CHANGED.
Android. 2025. View. (2025). Retrieved 2025-01-07 from https://developer.
android.com/reference/android/view/View.

Android. 2025. View.accessibilitydelegate. (2025). Retrieved 2025-01-07 from
https://developer.android.com/reference/android/view/View.AccessibilityD
elegate.

Android. 2025. Viewgroup. (2025). Retrieved 2025-01-07 from https://developer.
android.com/reference/android/view/ViewGroup.

Android. 2025. Webview. (2025). Retrieved 2025-01-07 from https://developer.
android.com/reference/android/webkit/WebView.

Androzoo. 2025. Androzoo. (2025). Retrieved 2025-01-07 from https://androzoo.
unilu/.

Simone Aonzo, A. Merlo, Giulio Tavella, and Yanick Fratantonio. 2018. Phishing
attacks on modern android. In Proceedings of the 25th ACM Conference on
Computer and Communications Security (CCS). Toronto, ON, Canada, (Oct.
2018).

AppBrain. 2025. Appbrain - everything you need for a successful android app.
(2025). Retrieved 2025-01-07 from https://www.appbrain.com/.

Appium. 2025. Appium. (2025). Retrieved 2025-01-07 from https://appium.io/
docs/en/latest/.

Marcus Botacin, Felipe Duarte Domingues, Fabricio Ceschin,
Raphael Machnicki, Marco Antonio Zanata Alves, Paulo Licio de Geus, and
André Grégio. 2022. Antiviruses under the microscope: a hands-on
perspective. Computers and Security, 112, (Jan. 2022), 102500.

Davide Bove and Anatoli Kalysch. 2019. In pursuit of a secure ui: the cycle
of breaking and fixing android's ui. it - Information Technology, 61, 2-3,
(Apr. 2019), 147-156.

Andrew Buck. 2025. Mobile apps vs mobile websites: why people spend 90% of
their time in apps. (2025). Retrieved 2025-01-07 from https://www.mobiloud.
com/blog/mobile-apps-vs-mobile-websites.

Sen Chen, Chunyang Chen, Lingling Fan, Mingming Fan, Xian Zhan, and
Yang Liu. 2022. Accessible or not? an empirical investigation of android app
accessibility. IEEE Transactions on Software Engineering, 48, 10, (Oct. 2022),
3954-3968.

CyberGhostVPN. 2025. New google play malware poses major threat to mobile
banking. (2025). Retrieved 2025-01-07 from https://www.cyberghostvpn.com/
en%5C_US/privacyhub/google-play-malware/.

Wenrui Diao et al. 2019. Kindness is a risky business: on the usage of the
accessibility APIs in android. In Proceedings of the 22nd International Symposium
on Research in Attacks, Intrusions and Defenses (RAID). Beijing, China, (Sept.
2019).

Alice Boxhall et al. 2025. Accessibility object model. (2025). Retrieved 2025-01-
07 from https://wicg.github.io/aom/explainer.html.

Threat Fabric. 2022. 2022 mobile threat landscape update. (2022). Retrieved
2025-01-07 from https://www.threatfabric.com/blogs/h1-2022-mobile- threat-
landscape.html.

Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato,
Mauro Conti, and Atul Prakash. 2016. FlowFence: practical data protection for
emerging IoT application frameworks. In Proceedings of the 25th USENIX
Security Symposium (Security). Austin, TX, (Aug. 2016).

Yanick Fratantonio, Chenxiong Qian, Simon P. Chung, and Wenke Lee. 2017.
Cloak and dagger: from two permissions to complete control of the UI feedback
loop. In Proceedings of the 38th IEEE Symposium on Security and Privacy (S&P).
San Jose, CA, (May 2017).

Jonathan Fuller, Ranjita Pai Kasturi, Amit Sikder, Haichuan Xu, Berat Arik,
Vivek Verma, Ehsan Asdar, and Brendan Saltaformaggio. 2021. C3po:
large-scale study of covert monitoring of c&c servers via over-permissioned
protocol infiltration. In Proceedings of the 28th ACM Conference on Computer
and Communications Security (CCS). Seoul, South Korea, (Nov. 2021).

(38]
(39]

[40]

[41]

[43]

[44]

[47]

(48]

[50]
[51]

(52]

(53]

[54]

[55]

[56]

[57]

(58]

Haichuan Xu et al.

Google. 2025. Google cloud natual language api basics. (2025). Retrieved 2025-
01-07 from https://cloud.google.com/natural-language/docs/basics.

Google. 2025. Navigate your device with talkback. (2025). Retrieved 2025-01-07
from https://support.google.com/accessibility/android/answer/6006598?sjid.
Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi.
2014. ASM: a programmable interface for extending android security. In
Proceedings of the 23rd USENIX Security Symposium (Security). San Diego, CA,
(Aug. 2014).

Jie Huang, Michael Backes, and Sven Bugiel. 2021. A1ly and privacy don’t
have to be mutually exclusive: constraining accessibility service misuse on
android. In Proceedings of the 30th USENIX Security Symposium (Security).
Virtual Conference, (Aug. 2021).

Yeongjin Jang, Chengyu Song, Simon P. Chung, Tielei Wang, and Wenke Lee.
2014. Ally attacks: exploiting accessibility in operating systems. In Proceedings
of the 21st ACM Conference on Computer and Communications Security (CCS).
Scottsdale, AZ, (Nov. 2014).

Anatoli Kalysch, Davide Bove, and Tilo Miiller. 2018. How android’s Ul security
is undermined by accessibility. In Proceedings of the 2nd Reversing and Offensive-
Oriented Trends Symposium (ROOTS). Vienna, Austria, (Nov. 2018).

Joshua Kraunelis, Yinjie Chen, Zhen Ling, Xinwen Fu, and Wei Zhao. 2013. On
malware leveraging the android accessibility framework. In Proceedings of
Mobile and Ubiquitous Systems: Computing, Networking, and Services
(MobiQuitous). Tokyo, Japan, (Dec. 2013).

Ravie Lakshmanan. 2023. Goldoson android malware infects over 100 million
google play store downloads. (2023). Retrieved 2025-01-07 from https://thehac
kernews.com/2023/04/goldoson-android-malware-infects-over.html.

Ravie Lakshmanan. 2022. Teabot android banking malware spreads again
through google play store apps. (2022). Retrieved 2025-01-07 from https://
thehackernews.com/2022/03/teabot- android - banking - malware - spreads.
html.

Yonas Leguesse, Mark Vella, Christian Colombo, and Julio C HernandezCastro.
2020. Reducing the forensic footprint with android accessibility attacks. In
Proceedings of Security and Trust Management - 16th International Workshop
(STM). Guildford, UK, (Sept. 2020).

Chonggqing Lei, Zhen Ling, Yue Zhang, Kai Dong, Kaizheng Liu, Junzhou Luo,
and Xinwen Fu. 2023. Do not give a dog bread every time he wags his tail:
stealing passwords through content queries (CONQUER) attacks. In Proceedings
of the 2023 Annual Network and Distributed System Security Symposium (NDSS).
San Diego, CA, (Feb. 2023).

Forough Mehralian, Navid Salehnamadi, Syed Fatiul Huq, and Sam Malek.
2022. Too much accessibility is harmful! automated detection and analysis of
overly accessible elements in mobile apps. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering (ASE). Rochester,
ML, (Oct. 2022).

Mozilla. 2025. Accessibility. (2025). Retrieved 2025-01-07 from https://developer.
mozilla.org/en-US/docs/Web/Accessibility.

Mozilla. 2025. Aria. (2025). Retrieved 2025-01-07 from https://developer.mozilla.
org/en-US/docs/Web/Accessibility/ARIA.

Mozilla. 2025. Document object model. (2025). Retrieved 2025-01-07 from https:
//developer.mozilla.org/en-US/docs/Web/API/Document %5C _Object %5
C_Model.

Mohammad Naseri, Nataniel P Borges Jr, Andreas Zeller, and Romain Rouvoy.
2019. Accessileaks: investigating privacy leaks exposed by the android
accessibility service. In Proceedings of Privacy Enhancing Technologies
Symposium (PETS). Stockholm, Sweden, (Apr. 2019).

David Oygenblik, Carter Yagemann, Joseph Zhang, Arianna Mastali, Jeman
Park, and Brendan Saltaformaggio. 2024. Ai psychiatry: forensic investigation
of deep learning networks in memory images. In Proceedings of the 33rd USENIX
Security Symposium (Security). Philadelphia, PA, (Aug. 2024).

Ranjita Pai Kasturi, Jonathan Fuller, Yiting Sun, Omar Chabklo,
Andres Rodriguez, Jeman Park, and Brendan Saltaformaggio. 2022. Mistrust
plugins you must: a large-scale study of malicious plugins in wordpress
marketplaces. In Proceedings of the 31st USENIX Security Symposium (Security).
Boston, MA, (Aug. 2022).

Ranjita Pai Kasturi, Yiting Sun, Ruian Duan, Omar Alrawi, Ehsan Asdar, Victor
Zhu, Yonghwi Kwon, and Brendan Saltaformaggio. 2020. Tardis: rolling back the
clock on cms-targeting cyber attacks. In Proceedings of the 41st IEEE Symposium
on Security and Privacy (S&P). Virtual Conference, (May 2020).

Jingjing Ren, Martina Lindorfer, Daniel Dubois, Ashwin Rao, David Choffnes,
and Narseo Vallina-Rodriguez. 2018. Bug fixes, improvements, ... and privacy
leaks - a longitudinal study of pii leaks across android app versions. In
Proceedings of the 2018 Annual Network and Distributed System Security
Symposium (NDSS). San Diego, CA, (Feb. 2018).

Navid Salehnamadi, Abdulaziz Alshayban, JunWei Lin, Iftekhar Ahmed,
Stacy M Branham, and Sam Malek. 2021. Latte: use-case and assistive-service
driven automated accessibility testing framework for android. In Proceedings
of the 2021 Conference on Human Factors in Computing Systems (CHI).
Yokohama, Japan, (May 2021).

https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo%5C#getUniqueId()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo%5C#getUniqueId()
https://developer.android.com/reference/android/view/accessibility/AccessibilityNodeInfo%5C#getUniqueId()
https://developer.chrome.com/docs/android/custom-tabs
https://developer.android.com/reference/android/widget/TextView%5C#setText(java.lang.CharSequence)
https://developer.android.com/reference/android/widget/TextView%5C#setText(java.lang.CharSequence)
https://developer.android.com/develop/ui/views/touch-and-input/keyboard-input/style
https://developer.android.com/develop/ui/views/touch-and-input/keyboard-input/style
https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent%5C#TYPE%5C_VIEW%5C_ACCESSIBILITY%5C_FOCUSED
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent%5C#TYPE%5C_VIEW%5C_ACCESSIBILITY%5C_FOCUSED
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent%5C#TYPE%5C_VIEW%5C_ACCESSIBILITY%5C_FOCUSED
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent%5C#TYPE%5C_WINDOW%5C_STATE%5C_CHANGED
https://developer.android.com/reference/android/view/accessibility/AccessibilityEvent%5C#TYPE%5C_WINDOW%5C_STATE%5C_CHANGED
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View
https://developer.android.com/reference/android/view/View.AccessibilityDelegate
https://developer.android.com/reference/android/view/View.AccessibilityDelegate
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/view/ViewGroup
https://developer.android.com/reference/android/webkit/WebView
https://developer.android.com/reference/android/webkit/WebView
https://androzoo.uni.lu/
https://androzoo.uni.lu/
https://www.appbrain.com/
https://appium.io/docs/en/latest/
https://appium.io/docs/en/latest/
https://www.mobiloud.com/blog/mobile-apps-vs-mobile-websites
https://www.mobiloud.com/blog/mobile-apps-vs-mobile-websites
https://www.cyberghostvpn.com/en%5C_US/privacyhub/google-play-malware/
https://www.cyberghostvpn.com/en%5C_US/privacyhub/google-play-malware/
https://wicg.github.io/aom/explainer.html
https://www.threatfabric.com/blogs/h1-2022-mobile-threat-landscape.html
https://www.threatfabric.com/blogs/h1-2022-mobile-threat-landscape.html
https://cloud.google.com/natural-language/docs/basics
https://support.google.com/accessibility/android/answer/6006598?sjid
https://thehackernews.com/2023/04/goldoson-android-malware-infects-over.html
https://thehackernews.com/2023/04/goldoson-android-malware-infects-over.html
https://thehackernews.com/2022/03/teabot-android-banking-malware-spreads.html
https://thehackernews.com/2022/03/teabot-android-banking-malware-spreads.html
https://thehackernews.com/2022/03/teabot-android-banking-malware-spreads.html
https://developer.mozilla.org/en-US/docs/Web/Accessibility
https://developer.mozilla.org/en-US/docs/Web/Accessibility
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA
https://developer.mozilla.org/en-US/docs/Web/API/Document%5C_Object%5C_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document%5C_Object%5C_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document%5C_Object%5C_Model

Lock the Door But Keep the Window Open: Extracting App-Protected Accessibility Information from Browser-Rendered Websites CCS ’25, October 13-17, 2025, Taipei, Taiwan

[59] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. 2015. Guitar: piecing together android app guis from memory
images. In Proceedings of the 22nd ACM Conference on Computer and
Communications Security (CCS). Denver, CO, (Oct. 2015).

[60] Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and
Golden G. Richard. 2016. Screen after previous screens: spatial-temporal
recreation of android app displays from memory images. In Proceedings of the
25th USENIX Security Symposium (Security). Austin, TX, (Aug. 2016).

[61] Gaurav Shinde. 2017. Malware on google play abusing accessibility service.
(2017). Retrieved 2025-01-07 from https://www.zscaler.com/blogs/security-
research/malware-google-play-abusing-accessibility- service.

[62] Bill Toulas. 2023. Cybercrime service bypasses android security to install
malware. (2023). Retrieved 2025-01-07 from
https://www .bleepingcomputer.com/news/security/cybercrime - service -
bypasses-android-security-to-install-malware/.

[63] Feng Xiao, Zheng Yang, Joey Allen, Guangliang Yang, Grant Williams, and
Wenke Lee. 2022. Understanding and mitigating remote code execution
vulnerabilities in cross-platform ecosystem. In Proceedings of the 29th ACM
Conference on Computer and Communications Security (CCS). Los Angeles, CA,
(Nov. 2022).

[64] Haichuan Xu, Mingxuan Yao, Runze Zhang, Mohamed Moustafa Dawoud,
Jeman Park, and Brendan Saltaformaggio. 2024. Dva: extracting victims and
abuse vectors from android accessibility malware. In Proceedings of the 33rd
USENIX Security Symposium (Security). Philadelphia, PA, (Aug. 2024).

[65] Yuxuan Yan, Zhenhua Li, Qi Alfred Chen, Christo Wilson, Tianyin Xu,
Ennan Zhai, Yong Li, and Yunhao Liu. 2019. Understanding and detecting
overlay-based android malware at market scales. In Proceedings of the 17th
ACM International Conference on Mobile Computing Systems (MobiSys). Seoul,
South Korea, (June 2019).

[66] Zheng Yang, Joey Allen, Matthew Landen, Roberto Perdisci, and Wenke Lee.
2023. Trident: towards detecting and mitigating web-based social engineering
attacks. In Proceedings of the 32nd USENIX Security Symposium (Security).
Anaheim, CA, (Aug. 2023).

[67] Zheng Yang, Simon Chung, Jizhou Chen, Runze Zhang,
Brendan Saltaformaggio, and Wenke Lee. 2025. Coindef: a comprehensive
code injection defense for the electron framework. In Proceedings of the 46th
IEEE Symposium on Security and Privacy (S&P). San Francisco, CA, (May 2025).

[68] Mingxuan Yao, Jonathan Fuller, Ranjita Pai Sridhar, Saumya Agarwal, Amit K.
Sikder, and Brendan Saltaformaggio. 2023. Hiding in plain sight: an empirical
study of web application abuse in malware. In Proceedings of the 32nd USENIX
Security Symposium (Security). Anaheim, CA, (Aug. 2023).

[69] Mingxuan Yao, Runze Zhang, Haichuan Xu, Shih-Huan Chou,
Varun Chowdhary Paturi, Amit K. Sikder, and Brendan Saltaformaggio. 2024.
Pulling off the mask: forensic analysis of the deceptive creator wallets behind
smart contract fraud. In Proceedings of the 45th IEEE Symposium on Security
and Privacy (S&P). San Francisco, CA, (May 2024).

[70] Runze Zhang, Mingxuan Yao, Haichuan Xu, Omar Alrawi, Jeman Park, and
Brendan Saltaformaggio. 2025. Hitchhiking vaccine: enhancing botnet
remediation with remote code deployment reuse. In Proceedings of the 2025
Annual Network and Distributed System Security Symposium (NDSS). San
Diego, CA, (Feb. 2025).

[71] Runze Zhang et al. 2025. Identifying incoherent search sessions: search click
fraud remediation under real-world constraints. In Proceedings of the 46th IEEE
Symposium on Security and Privacy (S&P). San Francisco, CA, (May 2025).

A Validation

We validated SOMBRA’s accuracy in detecting app-side protected
views and matching them with browser-rendered elements. From
our dataset, we randomly selected an app and included it in the
validation set if it had at least one app-side protected native
element identified by SOMBRA, continuing this process until we
found 10 such apps. This approach ensures the existence of
app-side ground truth for ally-protected views, enabling
comparison with the corresponding browser-side elements. We
then installed them on the Google Pixel 5 device running Android
14 and navigated to the Chrome-rendered websites of the 10 apps
on the same device. We obtained the ground truth of app-side and
browser-side protection utilizing Android’s built-in TalkBack [39]
service, manually traversing the app’s and website’s user profile
screen, retrieving the text of each on-screen element and

Table 5: Validation Of SOMBRA’s Detection Of App-side
Protected Views And Browser-side Exposed Views.

Name App-Side Browser-Side!
SOMBRA? FP FN | SOMBRA® FP FN
MySynchrony 6 0 0 9 0
MetaMask 7 0 0 9 0 0
Varo Bank 4 0 0 7 0 0
ParkMobile 5 0 2 7 0 2
ChargePoint 7 0 0 22 0 0
Ventra 11 0 0 14 0 3
Klarna 4 0 0 8 0 0
CVS 2 0 0 6 0 0
Belk 12 0 0 11 0 4
Dollar General 8 0 0 18 0 0
Total 6 0 2| 11 0 9

1: Rendered by the mobile Chrome browser.
2: SOMBRA’s detected app-side protected views.
3: SOMBRA'’s detected browser-side exposed views.

comparing them with the embedded ally text broadcast in
ViewallyFocused [17] events.

Validation Results. For app-side validation, as shown in Columns
2-4 of Table 5, SOMBRA has 97% accuracy in detecting app-side
protected views. SOMBRA missed two (FN) while analyzing the
Park Mobile app. Upon further investigation, we found that the
Park Mobile app broadcasts fixed placeholder addresses for two
views that represent users’ addresses, acting as an effective ally
protection. We confirmed that this is a rare occurrence.

For browser-side validation, as shown in Columns 5-7 of Table 5,
SOMBRA achieved 93% accuracy in matching and detecting
browser-side exposed elements. Because of the two FN app-side
views missed by SOMBRA in the Park Mobile app, SOMBRA also
missed the two corresponding browser-side elements. For the
Ventra app, SOMBRA missed three elements (FN) that match the
app-side protected user account number and balance fields because
of missing element labels by website developers. Similarly in the
Belk app, SOMBRA missed four elements (FN) that match the
app-side protected reward member number and contact detail
because of empty element labels as well.

https://www.zscaler.com/blogs/security-research/malware-google-play-abusing-accessibility-service
https://www.zscaler.com/blogs/security-research/malware-google-play-abusing-accessibility-service
https://www.bleepingcomputer.com/news/security/cybercrime-service-bypasses-android-security-to-install-malware/
https://www.bleepingcomputer.com/news/security/cybercrime-service-bypasses-android-security-to-install-malware/

	Abstract
	1 Introduction
	2 Background
	3 Exposing Mobile Browser Users' Sensitive Information
	3.1 Leakage Types
	3.2 Attack Workflow
	3.3 Attack Prerequisites

	4 Pinpointing Browser-Side Leakage of a11y Information
	4.1 App-Side a11y Model
	4.2 Browser-Side a11y Model
	4.3 Finding the Mismatch Between App-Side and Browser-Side a11y Protection

	5 Evaluation
	5.1 Dataset & Experiment Setup
	5.2 Browser-Side a11y Leakage in Real Benign Services
	5.3 Security Impact
	5.4 Developers' App-Side and Browser-Side a11y Protection Adoption Comparison

	6 Case Studies
	7 Discussion
	8 Related Work
	9 Conclusion
	Acknowledgments
	A Validation

